The uniqueness theorem for entanglement measures

نویسندگان

  • Matthew J. Donald
  • Oliver Rudolph
چکیده

We review the mathematics of the theory of entanglement measures. As well as giving proofs from first principles for some well-known and important results, we provide a sharpened version of a uniqueness theorem which gives necessary and sufficient conditions for an entanglement measure to coincide with the reduced von Neumann entropy on pure states. We also prove several versions of a theorem on extreme entanglement measures in the case of mixed states. We analyse properties of the asymptotic regularization of entanglement measures proving, for example, convexity for the entanglement cost and for the regularized relative entropy of entanglement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An extension theorem for finite positive measures on surfaces of finite‎ ‎dimensional unit balls in Hilbert spaces

A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...

متن کامل

A uniqueness theorem for entanglement measures

We obtain a mathematically simple characterization of all functionals coinciding with the von Neumann reduced entropy on pure states based on the Khinchin-Faddeev axiomatization of Shannon entropy and give a physical interpretation of the axioms in terms of entanglement.

متن کامل

A Uniqueness Theorem of the Solution of an Inverse Spectral Problem

This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.

متن کامل

The uniqueness theorem for inverse nodal problems with a chemical potential

In this paper, an inverse nodal problem for a second-order differential equation having a chemical potential on a finite interval is investigated. First, we estimate the nodal points and nodal lengths of differential operator. Then, we show that the potential can be uniquely determined by a dense set of nodes of the eigenfunctions.

متن کامل

A novel existence and uniqueness theorem for solutions to FDEs driven by Lius process with weak Lipschitz coefficients

This paper we investigate the existence and uniqueness of solutions to fuzzydierential equations driven by Liu's process. For this, it is necessary to provideand prove a new existence and uniqueness theorem for fuzzy dierential equationsunder weak Lipschitz condition. Then the results allows us to considerand analyze solutions to a wide range of nonlinear fuzzy dierential equationsdriven by Liu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1957